个人简介
主要从事东亚冬季风和平流层-对流层相互作用方面的研究。主持国家自然科学基金青年基金、中国博士后面上基金。近5年发表SCI论文27篇,其中第一/通讯作者发表论文10篇,论文已被Nature等国际知名期刊和多位国际知名学者引用。任Communications Earth & Environment, Journal of Climate等期刊审稿人。
教育背景:
2014.09–2019.07 中国科学院大气物理研究所,气象学,硕博连读,理学博士
2006.09–2009.07 中国海洋大学,海洋与大气学院,大气科学,理学学士
科研工作经历:
2023.07–今 太阳成集团,太阳集团7237网站,副教授
2019.07–2023.07 中国科学院大气物理研究所,特别研究助理
承担科研项目:
主持 2021–2023,国家自然科学基金青年基金,热带平流层QBO对冬季ENSO热带外遥相关的调制及其机理研究,42005032,24万,在研,主持;
2020–2023,中国博士后科学基金面上项目,热带平流层QBO和ENSO对东亚冬季风的协同影响及其机理研究,2020M670417,8万,在研,主持。
参加 (1) 2023–2027,国家自然科学基金重点项目,全球变暖背景下中国夏季风北界年代际变化和机理及未来趋势预估,42230605,273万元,在研,参与;(2) 2022–2025,国家自然科学基金面上项目, 全球变暖背景下超级干旱的定量评估及东亚热点地区的检测和成因研究, 42175041,58万元, 在研, 参与;(3) 2022–2027,科技部, 国家重点研发计划青年科学家项目,海-气系统与海洋有机气溶胶相互作用过程与机理研究, 2022YFF0802900, 400万元, 在研, 参与;(4) 2020–2022,国家自然科学基金国际(地区)合作与交流项目, 东亚和西伯利亚地区的气候变异及其与平流层过程和热带长周期振荡的关系, 42011530082, 15万元, 结题, 参与;(5) 2020–2022,国家自然科学基金国际(地区)合作与交流项目,全球变暖背景下亚洲东南部地区夏季极端气候事件的年代际变异特征、机理和预测, 41961144016, 200万元, 结题, 参与;(6) 2019–2022,国家自然科学基金国际(地区)合作与交流项目, 热带外地区气候对MJO和ENSO的响应机理及对次季节-季节尺度气候预测的新认识, 41961144025,175万元, 结题, 参与;(7) 2018–2020,国家自然科学基金青年科学基金项目,南海夏季风爆发对初夏西北太平洋热带气旋生成的影响过程与机理, 41705071, 21万元, 结题, 参与。
发表论文:
1) Ma, T., W. Chen*, X. An, C.I. Garfinkel, and Q. Cai, 2023: Nonlinear effects of thestratospheric Quasi-Biennial Oscillationand ENSO on the North Atlantic winteratmospheric circulation. Journal of Geophysical Research: Atmospheres, 128, e2023JD039537. https://doi.org/10.1029/2023JD039537
2) Ma, T., and W. Chen*, 2023: Recent progress in understanding the interaction between ENSO and the East Asian winter monsoon: A review. Frontiers in Earth Science, 11: 1098517. doi: 10.3389/feart.2023.1098517
3) Ma, T., W. Chen*, S. Chen, C. I. Garfinkel, S. Ding, L. Song, Z. Li, Y. Tang, J. Huangfu, H. Gong, and W. Zhao, 2022: Different ENSO teleconnections over East Asia in early and late winter: role of precipitation anomalies in the tropical Indian Ocean–far western Pacific. J. Climate, 35: 4319-4335
4) Ma, T., W. Chen*, H. Gong, P. Hu, Y. Jiao, X. An, and L. Wang, 2022: Linkage of Strong Intraseasonal Events of the East Asian Winter Monsoon to the Tropical Convections over the Western Pacific. Remote Sensing, 14, 2993. https://doi.org/10.3390/rs14132993
5) Cai, Q., T. Ma*, W. Chen*, K. Wei, A. I. Pogoreltsev, and A. V. Koval, 2022: The observed connection between the Quasi-Biennial Oscillation and the persistence of the North Atlantic Oscillation in boreal winter. Int. J. Climatol., 42: 8777-8791
6) Ma, T., and W. Chen*, 2021: Climate variability of the East Asian winter monsoon and associated extratropical-tropical interaction: a review. Annals of the New York Academy of Sciences, 1504: 44-62
7) Ma, T., W. Chen*, J. Huangfu, L. Song, and Q. Cai, 2021: The observed influence of the Quasi-Biennial Oscillation in the lower equatorial stratosphere on the East Asian winter monsoon during early boreal winter. Int. J. Climatol., 41: 6254-6269
8) Ma, T., W. Chen*, H.-F. Graf, S. Ding, P. Xu, L. Song, and X. Lan, 2020: Different Impacts of the East Asian Winter Monsoon on the Surface Air Temperature in North America during ENSO and Neutral ENSO years. J. Climate, 33: 10671-10690
9) Ma, T., W. Chen*, D. Nath, H.-F. Graf, L. Wang, and J. Huangfu, 2018: East Asian winter monsoon impacts the ENSO-related teleconnections and North American seasonal air temperature prediction. Sci. Rep., 8: 6547, doi: 10.1038/s41598-018-24552-3
10) Ma, T., W. Chen*, J. Feng, and R. Wu, 2018: Modulation effects of the East Asian winter monsoon on El Niño-related rainfall anomalies in southeastern China. Sci. Rep., 8: 14107, doi: 10.1038/s41598-018-32492-1
11) Chen, W., and Coauthors, 2023: Recent advances in understanding multi-scale climate variability of the Asian monsoon. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-023-2266-8.
12) Chen, L., W. Chen, P. Hu, S. Chen, X. An, T. Ma, and Z. Wang, 2023: Processes and mechanisms of the initial formation of the Siberian High during the autumn-to-winter transition. Climate Dynamics., DOI: 10.1007/s00382-023-06911-7.
13) Aru, H., W. Chen, S. Chen, X. An, T. Ma, and Q. Cai, 2023: Asymmetrical Modulation of the Relationship Between the Western Pacific Pattern and El Niño–Southern Oscillation by the Atlantic Multidecadal Oscillation in the Boreal Winter. Geophysical Research Letters, 50, e2023GL103356, https://doi.org/10.1029/2023GL103356.
14) An, X., W. Chen, W. Zhang, S. Chen, T. Ma, F. Wang, and L. Sheng, 2023: Record-breaking summer rainfall in the Asia–Pacific region attributed to the strongest Asian westerly jet related to aerosol reduction during COVID-19. Environmental Research Letters, 18, doi: 10.1088/1748-9326/acdd84.
15) An, X., W. Chen, L. Sheng, C. Li, and T. Ma, 2023: Synergistic Effect of El Niño and Arctic Sea-Ice Increment on Wintertime Northeast Asian Anomalous Anticyclone and Its Corresponding PM2.5 Pollution. Journal of Geophysical Research: Atmospheres, 128, e2022JD037840, https://doi.org/10.1029/2022JD037840.
16) An, X., W. Chen*, T. Ma, H. Aru, Q. Cai, C. Li, and L. Sheng*, 2023: Key role of Arctic sea-ice in subseasonal reversal of early and late winter PM2.5 concentration anomalies over the North China Plain. Geophys. Res. Lett., 50, e2022GL101841. https://doi.org/10.1029/2022GL101841
17) Cai, Q., W. Chen*, S. Chen, T. Ma, and C. I. Garfinkel, 2022: Influence of the Quasi-Biennial Oscillation on the spatial structure of winter-time Arctic Oscillation. J. Geophys. Res. Atmos., 127, e2021JD035564. https://doi.org/10.1029/2021JD035564
18) Huangfu, J., Y. Tang, L. Wang, W. Chen, R. Huang, and T. Ma, 2022: Joint influence of the quasi-biennial oscillation and Indian Ocean basin mode on tropical cyclone occurrence frequency over the western North Pacific. Clim. Dyn., 59, 3439-3449
19) Huangfu, J., Y. Tang, T. Ma, W. Chen, and L. Wang, 2021: Influence of the QBO on tropical convection and its impact on tropical cyclone activity over the western North Pacific. Clim. Dyn., 57, 657-669
20) Wang, Q., Huang, G., Wang, L., Piao, J., Ma, T., Hu, P., et al. (2022). Mechanism of the summer rainfall variation in Transitional Climate Zone in East Asia from the perspective of moisture supply during 1979–2010 based on the Lagrangian method. Climate Dynamics. doi: 10.1007/s00382-022-06344-8.
21) Zhao, W., W. Chen*, S. Chen*, H. Gong, and T. Ma, 2021: Roles of anthropogenic forcings in the observed trend of decreasing late-summer precipitation over the East Asian transitional climate zone. Sci. Rep., 11: 4935, doi: 10.1038/s41598-021-84470-9
22) Zhao, W., S. Chen, H. Zhang, J. Wang, W. Chen, R. Wu, W. Xing, Z. Wang, P. Hu, J. Piao, and T. Ma, 2021: Distinct impacts of ENSO on haze pollution in Beijing-Tianjin-Hebei region between early and late winters. J. Climate, 35, 687-704
23) Cen, S., W. Chen*, S. Chen, Y. Liu, and T. Ma, 2020: Potential impact of atmospheric heating over East Europe on the zonal shift in the South Asian high: the role of the Silk Road teleconnection. Sci. Rep., 10: 6543, doi: 10.1038/s41598-020-63364-2
24) Wang, S., D. Debashis, W. Chen, and T. Ma, 2020: CMIP5 model simulations of warm Arctic-cold Eurasia pattern in winter surface air temperature anomalies. Clim. Dyn., 54, 4499-4513
25) Chen, W., L. Wang, J. Feng, Z. Wen, T. Ma, X. Yang, and C. Wang, 2019: Recent Progress in Studies of the Variabilities and Mechanisms of the East Asian Monsoon in a Changing Climate. Adv. Atmos. Sci., 36(9), 887-901
26) Ding, S., W. Chen*, H. F. Graf, Z. Chen, and T. Ma, 2019: Quasi-stationary extratropical wave trains associated with distinct tropical Pacific seasonal mean convection patterns: observational and AMIP model results. Clim. Dyn., 53, 2451-2476
27) Huangfu, J., W. Chen, T. Ma, and R. Huang, 2018: Influences of sea surface temperature in the tropical Pacific and Indian Oceans on tropical cyclone genesis over the western North Pacific in May. Clim. Dyn., 51, 1915-1926
(更新于2023-9-04)