研究背景及研究兴趣
研究背景:湍流是自然界中普遍存在的重要物理现象,空间等离子体普遍呈现出湍动状态。随着近年来空间探测技术的迅猛发展,太阳系等离子体环境为我们提供了研究空间等离子体湍流的“理想实验室”。如何理解湍流这种跨尺度无序/有序扰动,尤其是其在动力学(离子/电子)尺度的特性,对理解等离子体系统能量传输、物质输运等关键过程起着至关重要的作用。本人及课题组通过对卫星探测数据展开分析,结合理论及数值模拟,对日地空间的湍动等离子体物理过程进行探索。
研究兴趣:空间等离子体湍流,太阳风,磁层,间歇性结构,湍动磁重联,等离子体不稳定性,空间天气。
研究成果
在Astrophysical Journal Letters, Astrophysical Journal, Geophysical Research Letters, Journal of Geophysical Research: Space Physics等SCI期刊发表论文40余篇(总引用700余次,h指数17,i10指数28)。参与美国地球物理学会(AGU)英文专著《Magnetospheres in the Solar System》章节编写。
工作及教育经历
· 2021年 – 至今 太阳成集团,副教授
· 2021年 – 2021年 中国科学院紫金山天文台,客座副研究员
· 2017年 – 2021年 英国卢瑟福·阿普尔顿国家实验室,博士后(欧盟玛丽居里学者项目)
· 2016年12月–2017年6月 北京航空航天大学空间与环境学院,博士后(北航卓越百人博士后项目)
· 2011年 – 2016年 北京航空航天大学宇航学院 飞行器设计学科工学博士,导师:曹晋滨 教授
· 2008年9月–2011年3月 北京航空航天大学宇航学院 飞行器设计学科工学硕士,导师:黄 海 教授
· 2004年9月– 2008年6月 北京航空航天大学宇航学院 飞行器设计与工程(航天工程)工学学士 ,北京航空航天大学外语学院 英语双学位专业文学学士
主持项目
· 国家自然科学基金青年项目
· 云南省兴滇英才青年人才专项项目
· 太阳成集团“双一流”建设高层次人才引进项目
· 中国地震局横向课题
· 欧盟玛丽居里学者奖学金项目(隶属欧盟地平线2020项目及卢瑟福实验室国际学者项目)
人才培养项目
· 2022年,入选云南省兴滇英才支持计划
· 2021年,入选太阳成集团高层次人才引进计划
学术及社会任职
· 学术期刊评审编辑(Frontiers in Physics,Frontiers in Astronomy and Space Sciences)
· 学术期刊审稿人(Nature: Scientific Reports,The Astrophysical Journal,Journal of Geophysical Research: Space Physics,Earth and Planetary Physics,Astrophysics and Space Science)
· 第19届亚洲大洋洲地球科学学会年会(Asian-Oceania Geosciences Society, AOGS)子专题召集人(ST30 Recent Advancements on the Plasma Physics of the Inner Heliosphere)
· 玛丽居里学会会员
获奖情况
· 英国国家科研与创新署(UK Research and Innovation, UKRI)——英国科学与技术设施委员会(Science and Technology Facilities Council, STFC)——卢瑟福·阿普尔顿国家实验室突出贡献奖(2019-2020年)
· 第13届亚洲大洋洲地球科学学会会议(日地空间科学组)最佳海报(2016年)
· 中国地球科学联合学术年会员工优秀论文奖(2016年)
· 第16届全国日地空间物理学会议优秀论文奖(2015年)
· 北京航空航天大学优秀毕业生(2016年)
承担课程及公司产品
主讲课程:
研究生《空间环境与探测》,本科生《揭秘太阳风暴》
公司产品:
硕士研究生:王惠琳(2021级),陈文皓(2022级),秦潇潇(2022级)
指导员工科研锻炼:
2021年太阳成集团研究生科研创新项目,组员王惠琳,江海洋
2021年本科生大创项目,组员孙邈,翟晨曦,刘祥龙,夏登科
2022年本科生大创项目,组员彭嘉琦、刘科、刘家辉、张志恒、陈海帆
文章列表
[1]. Wang, T. Y., He, J. S., Alexandrova, O., Dunlop, M. W., Perrone, D., (2020). Observational Quantification of Three-dimensional Anisotropies and Scalings of Space Plasma Turbulence at Kinetic Scales. The Astrophysical Journal, 898, 91
https://doi.org/10.3847/1538-4357/ab99ca
[2]. Wang, T. Y., Alexandrova, O., Perrone, D., Dunlop, M. W., et al., (2019). Magnetospheric Multiscale Observation of Kinetic Signatures in the Alfvén Vortex. The Astrophysical Journal Letters, 871, L22
https://doi.org/10.3847/2041-8213/aafe0d
[3]. Wang, T. Y., Cao, J. B., Fu, H. S., Meng, X. J., et al., (2016). Compressible turbulence with slow‐mode waves observed in the bursty bulk flow of plasma sheet. Geophysical Research Letters, 43, 1854-1861
https://doi.org/10.1002/2016GL068147
[4]. Wang, T. Y., Cao, J. B., Fu, H. S., Liu, W. L., et al., (2014). Turbulence in the Earth's cusp region: The k-filtering analysis. Journal of Geophysical Research: Space Physics, 119, 9527-9542
https://doi.org/10.1002/2014JA019997
[5]. Dunlop, M. W., Wang, T., Dong, X., Haarland, S., Shi, Q., Fu, H., ... & Eastwood, J. (2021). Multispacecraft Measurements in the Magnetosphere. Magnetospheres in the Solar System, John Wiley & Sons, Inc.
https://doi.org/10.1002/9781119815624.ch40
[6]. Zhao, J. S., Wang, T. Y., Graham, D. B., He, J. S., Liu W., Dunlop M. W., and Wu, D. J., (2020). Identification of the Nature of Electromagnetic Waves near the Proton-cyclotron Frequency in Solar-terrestrial Plasmas. The Astrophysical Journal, 890, 17
https://doi.org/10.3847/1538-4357/ab672f
[7]. Chen, Z. Z., Wang, T. Y., Yu, Y., Chen, F., (2020). Relationship between Current Filaments and Turbulence During a Turbulent Reconnection. The Astrophysical Journal Letters, 888, L16
https://doi.org/10.3847/2041-8213/ab61fe
[8]. Zhao, J. S., Wang, T. Y., Dunlop, M. W., Shi, C., et al., (2019), Large‐Amplitude Electromagnetic Ion Cyclotron Waves and Density Fluctuations in the Flank of the Earth's Magnetosheath. Geophysical Research Letters, 46, 4545–4553
https://doi.org/10.1029/2019GL081964
[9]. Zhao, J. S., Wang, T. Y., Shi, C., Graham, D. B., et al., (2019), Ion and Electron Dynamics in the Presence of Mirror, Electromagnetic Ion Cyclotron, and Whistler Waves. The Astrophysical Journal, 883, 185
https://doi.org/10.3847/1538-4357/ab3bd1
[10]. Zhao, J. S., Wang, T. Y., Dunlop, M. W., He, J. S., et al., (2018). Modulation of Ion and Electron Pitch Angle in the Presence of Large-amplitude, Low-frequency, Left-hand Circularly Polarized Electromagnetic Waves Observed by MMS. The Astrophysical Journal, 867, 58
https://doi.org/10.3847/1538-4357/aae097
[11] Xiao, C., He, F., Shi, Q., Liu, W., Tian, A., Guo, R., ..., T.Y. Wang, H.Z. Wang, & Zhang, Z. (2023). Evidence for lunar tide effects in Earth’s plasmasphere. Nature Physics, 1-6.
https://doi.org/10.1038/s41567-022-01882-8
[12] Hou, C., He, J., Duan, D., Zhu, X., Li, W., Verscharen, D., ... & Wang, T. (2023). Efficient Energy Conversion through Vortex Arrays in the Turbulent Magnetosheath. The Astrophysical Journal, 946(1), 13.
https://doi.org/10.3847/1538-4357/acb927
[13] Chen, Z. Z., Liu, C. M., Yu, J., Wang, T. Y., Wang, J., Cui, J., & Cao, J. B. (2023). Electron‐Scale Front of Magnetic Pile‐Up Region in Reconnection Exhaust. Journal of Geophysical Research: Space Physics, 128(2), e2022JA030818.
https://doi.org/10.1029/2022JA030818
[14] Hu, Y., Zhima, Z., Fu, H., Cao, J., Piersanti, M., Wang, T., ... & Shen, X. (2023). A large‐scale magnetospheric line radiation event in the upper ionosphere recorded by the China‐Seismo‐Electromagnetic Satellite. Journal of Geophysical Research: Space Physics, e2022JA030743.
https://doi.org/10.1029/2022JA030743
[15] Liu, C. M., Cao, J. B., Wang, T. Y., & Xing, X. N. (2022). Energy transfer and electron heating in turbulent flux pileup region. Geophysical Research Letters, 49(24), e2022GL101415.
https://doi.org/10.1029/2022GL101415
[16] He, J., Zhu, X., Luo, Q., Hou, C., Verscharen, D., Duan, W.Y. Li, J.S. Zhao, T.Y. Wang, D. Graham, Q.G. Zong, Yao, Z. (2022). Observations of Rapidly Growing Whistler Waves in Front of Space Plasma Shock due to Resonance Interaction between Fluctuating Electron Velocity Distributions and Electromagnetic Fields. The Astrophysical Journal, 941(2), 147.
https://doi.org/10.3847/1538-4357/ac9ea9
[17]. Shi, C., Zhao, J., Malaspina, D. M., Bale, S. D., Dong, X., Wang, T., & Wu, D. (2022). Multiband Electrostatic Waves below and above the Electron Cyclotron Frequency in the Near-Sun Solar Wind. The Astrophysical Journal Letters, 926(1), L3
https://doi.org/10.3847/2041-8213/ac4d37
[18]. Zhang, J., Huang, S. Y., He, J. S., Wang, T. Y., Yuan, Z. G., Deng, X. H., ... & Yu, L. (2022). Three-Dimensional Anisotropy and Scaling Properties of Solar Wind Turbulence at Kinetic Scales in the Inner Heliosphere: Parker Solar Probe Observations. The Astrophysical Journal Letters, 924(2), L21
https://doi.org/10.3847/2041-8213/ac4027
[19]. Dunlop, M. W., Dong, X. C., Wang, T. Y., Eastwood, J. P., Robert, P., Haaland, S., ... & De Keyser, J. (2021). Curlometer technique and applications. Journal of Geophysical Research: Space Physics, 126(11), e2021JA029538.
https://doi.org/10.1029/2021JA029538
[20]. Dong, X. C., Dunlop, M. W., Wang, T. Y., Zhao, J. S., Fu, H. S., Chen, Z. Z., ... & Lindqvist, P. (2021). Observation of Nonuniform Energy Dissipation in the Electron Diffusion Region of Magnetopause Reconnection. Geophysical Research Letters, 48(13), e2020GL091928.
https://doi.org/10.1029/2020GL091928
[21]. Duan, D., He, J. S., Bowen, T. A., Woodham, L. D., Wang, T. Y., Chen. C. H, K., Mallet, A., Bale, S. D., (2021). Anisotropy of Solar Wind Turbulence in the Inner Heliosphere at Kinetic Scales: PSP Observations. The Astrophysical Journal Letters, 915, L8
https://doi.org/10.3847/2041-8213/ac07ac
[22]. Wei, D., Dunlop, M. W., Yang, J., Dong, X. C., Yu, Y., Wang, T. Y. (2021). Intense dB/dt Variations Driven by Near‐Earth Bursty Bulk Flows (BBFs): A Case Study. Geophysical Research Letters, 48(4)
https://doi.org/10.1029/2020GL091781
[23]. Shi, C., Zhao, J., Huang, J., Wang, T., Wu, D., Chen, Y., ... & Bale, S. D. (2021). Parker Solar Probe Observations of Alfvénic Waves and Ion-cyclotron Waves in a Small-scale Flux Rope. The Astrophysical Journal Letters, 908(1), L19.
https://doi.org/10.3847/2041-8213/abdd28
[24]. He, J. S., Zhu, X., Verscharen, D., Duan, D., Zhao, J., Wang, T. Y., (2020). Spectra of Diffusion, Dispersion, and Dissipation for Kinetic Alfvénic and Compressive Turbulence: Comparison between Kinetic Theory and Measurements from MMS. The Astrophysical Journal, 898, 43.
https://doi.org/10.3847/1538-4357/ab9174
[25]. Dong, X. C., Dunlop, M. W., Wang, T. Y., Trattner, K. J., Russell, C. T., Giles, B., (2020). MMS Observation of Secondary Magnetic Reconnection Beside Ion‐Scale Flux Rope at the Magnetopause. Geophysical Research Letters.
https://doi.org/10.1029/2020GL089075
[26]. Shi, C., Zhao, J.S., Huang, C.Y., Wang, T. Y., and Dunlop M. W., (2020). Modulation of ionospheric outflow ions by EMIC waves in the dayside outer magnetosphere. Physics of Plasmas, 27, 032902,
https://doi.org/10.1063/1.5142686
[27]. Wang, J. J., Zhang, Y., Webber, S. A., Liu, S., Meng, X, Wang, T. Y., et al., (2020). Solar Flare Predictive Features Derived from Polarity Inversion Line Masks in Active Regions Using an Unsupervised Machine Learning Algorithm. The Astrophysical Journal, 892, 140
https://doi.org/10.3847/1538-4357/ab7b6c
[28]. He, J. S., Duan, D., Wang, T. Y., Zhu, X. Y., et al., (2019), Direct Measurement of the Dissipation Rate Spectrum around Ion Kinetic Scales in Space Plasma Turbulence. The Astrophysical Journal, 880, 121
https://doi.org/10.3847/1538-4357/ab2a79
[29]. Dong, X.‐C., Dunlop, M. W., Trattner, K. J., Wang, T.‐Y., et al., (2019). Electron Sublayers and the Associated Magnetic Topologies in the Inner Low‐Latitude Boundary Layer. Geophysical Research Letters, 46, 5746 5753
https://doi.org/10.1029/2019GL081998
[30]. Li, Q. H., Yang, L., Wu, D. J., and Wang, T. Y., (2019). Electromagnetic Waves around the Proton Cyclotron Frequency in the Sheath Regions of Interplanetary Magnetic Clouds: STEREO Observations. The Astrophysical Journal, 874, 55
https://doi.org/10.3847/1538-4357/ab06f7
[31]. Wang, J. J., Liu, S. Q., Ao, X. Z., Zhang, Y. H., Wang, T. Y., et al., (2019). Parameters Derived from the SDO/HMI Vector Magnetic Field Data: Potential to Improve Machine-learning-based Solar Flare Prediction Models. The Astrophysical Journal, 884, 175
https://doi.org/10.3847/1538-4357/ab441b
[32]. Chen, Z. Z., Fu, H. S., Liu, C. M., Wang, T. Y., et al., (2019). Electron - Driven Dissipation in a Tailward Flow Burst. Geophysical Research Letters, 46, 5698–5706
https://doi.org/10.1029/2019GL082503
[33]. Dong, X.-C., Dunlop, M. W., Wang, T.-Y., Cao, J.-B., et al., (2018). Carriers and Sources of Magnetopause Current: MMS Case Study. Journal of Geophysical Research: Space Physics, 123, 5464
https://doi.org/10.1029/2018JA025292
[34]. Huang, H., Yu, Y., Dai, L., and Wang, T. Y., (2018). Kinetic Alfvén Waves Excited in Two‐Dimensional Magnetic Reconnection. Journal of Geophysical Research: Space Physics, 123, 6655–6669
https://doi.org/10.1029/2017JA025071
[35]. Xu, Y., Fu, H. S., Liu, C. M., and Wang, T. Y., (2018). Electron Acceleration by Dipolarization Fronts and Magnetic Reconnection: A Quantitative Comparison. The Astrophysical Journal, 853, 11
https://doi.org/10.3847/1538-4357/aa9f2f
[36]. Chen, Z. Z., Fu, H. S., Wang, T. Y., Cao D., et al., (2019). Reconstructing the flux-rope topology using the FOTE method. Sci China Tech Sci, 2019, 62: 144–150
https://doi.org/10.1007/s11431-017-9201-1
[37]. Cao, D., Fu, H. S., Cao, J. B., Wang, T. Y., et al., (2017). MMS observations of whistler waves in electron diffusion region. Geophysical Research Letters, 44, 3954–3962
https://doi.org/10.1002/2017GL072703
[38]. Yang, J., Cao, J. B., Fu, H. S., Wang, T. Y., et al., (2017). Broadband high‐frequency waves detected at dipolarization fronts. Journal of Geophysical Research: Space Physics, 122, 4299–4307
https://doi.org/10.1002/2016JA023465
[39]. Liu, C. M., Fu, H. S., Xu, Y., Wang, T. Y., et al., (2017), Suprathermal electron acceleration in the near‐Earth flow rebounce region. Journal of Geophysical Research: Space Physics, 122, 594–604
https://doi.org/10.1002/2016JA023437
[40]. Peng, F. Z., Fu, H. S., Cao, J. B., Graham, D. B., Chen, Z. Z., Cao, D., Xu, Y., Huang, S. Y., Wang, T. Y., et al., (2017). Quadrupolar pattern of the asymmetric guide‐field reconnection. Journal of Geophysical Research: Space Physics, 122, 6349–6356
https://doi.org/10.1002/2016JA023666
[41]. Pang, X. X., Cao, J. B., Liu, W. L., Ma, Y. D., Lu, H. Y., Yang, J. Y., Li, L. Y., Liu, X., Wang, J., Wang, T. Y., et al., (2015). Polytropic index of central plasma sheet ions based on MHD Bernoulli integral. Journal of Geophysical Research: Space Physics, 120, 4736-4747
https://doi.org/10.1002/2014JA020855
[42]. Zhima, Z., Cao, J. B., Liu, W. L., Fu, H. S., Wang, T. Y., et al., (2014). Storm time evolution of ELF/VLF waves observed by DEMETER satellite. Journal of Geophysical Research: Space Physics, 119, 2612-2622
https://doi.org/10.1002/2013JA019237
[43]. Wang, T. Y., Cao, J. B., Fu, H. S., and Yang, J., (2016). Solar wind compressible turbulence near proton scales: Cluster observations. AIP Conference Proceedings, 1720, 040018
https://doi.org/10.1063/1.4943829
[44]. Wang, T. Y., Cao, J. B., Fu, H. S., and Liu, W., (2014), Multi-spacecraft detection of kinetic Alfvén waves in the turbulent cusp region. XXXIth URSI General Assembly and Scientific Symposium.
https://doi.org/10.1109/URSIGASS.2014.6929907
[45]. Meng, X., Cao, J., Wang, T., & Ma, Y. (2014). Nonadiabatic acceleration of protons in the near-earth magnetotail during substorm dipolarization. Chin. J. Space Sci, 34(6), 794-801.
学术报告
口头报告
[1]. Observational quantification of three-dimensional anisotropies and scaling of kinetic Alfven turbulence, 5th Asia-Pacific Conference on Plasma Physics, Sep 2021, (invited)
[2]. In-situ measurement of space plasma turbulence: A limited/Biased view, July, 2021, Southern University of Science and Technology, (summer school lecture)
[3]. MMS observation of 3D anisotropies in magnetosheath turbulence, Space plasma turbulence and reconnection graduate academic conference, Beijing, China, Aug 2019
[4]. MMS observation of anisotropic particle distribution in an Alfvén vortex, Annual Meeting of Asia Oceania Geosciences Society (AOGS), Singapore, Aug 2019, (invited)
[5]. MMS observation of anisotropic particle distributions in an Alfvén vortex, Purple Mountain Observatory Colloquium, Nanjing, China, August 2019, (invited)
[6]. Pattern of small-scale flow structures in the turbulent solar wind, The 4th International Space Weather Conference, Beijing, China, August 2017, (invited)
[7]. Turbulent dissipation and structures in the space plasma flows, Purple Mountain Observatory Colloquium, Nanjing, China, January 2017, (invited)
[8]. Compressible turbulence with slow-mode waves observed in the magnetotail flow burst, International Summer School on Magnetic Reconnection in Space and Laboratory Plasmas, Kunming, China, July 2016
[9]. In situ evidence of compressible turbulence with slow magnetosonic waves in the reconnection jet, ISSI work shop on magnetic reconnection and small-scale structures, Beijing, China, October 2015
[10]. KAW and KSW turbulence: In situ evidence, Mini-Winter School on Turbulence, Magnetic Reconnection, and Energetic Particles, Weihai, China, Jan 2015
[11]. Multi-spacecraft detection of kinetic Alfvén waves in the turbulent cusp region, URSI GASS, Beijing, China, Aug 2014
墙报
[1]. Magnetospheric Multiscale Observation of Kinetic Effects in an Alfvén Vortex, EGU General Assembly, Vienna, Austria, April 2019
[2]. Patter of small-scale structures in the turbulent magnetosheath: MMS observations, The 15th International Solar Wind Conference, Brussels, Belgium, June 2018
[3]. Pattern of small-scale structures in the turbulent magnetosheath, EGU General Assembly, Vienna, Austria, April 2018
[4]. The excitation and the source location of the long-duration EMIC waves in the dayside outer magnetosphere, EGU General Assembly, Vienna, Austria, April 2018
[5]. Pattern of small-scale structures in the turbulent magnetosheath, Summer School on complexity and turbulence in space plasmas, L'Aquila, Italy, September 2017
[6]. Small-scale flow structures in the solar wind turbulence, Cluster 27th workshop, Bled, Slovenia, September 2017
[7]. Small-scale flow structures in the solar wind turbulence, AGU Chapman Conference, Chengdu, China, July 2017
[8]. Statistical Characteristics of ion heating within the bursty bulk flow of plasma sheet, Annual Meeting of Asia Oceania Geosciences Society (AOGS), Beijing, China, Aug 2016
[9]. Solar wind compressible turbulence near proton scales: Cluster observations, The 14th International Solar Wind Conference, Weihai, China, June 2015
[10]. Multi-spacecraft detection of kinetic Alfvén waves around the turbulent cusp region, AGU 2013 Fall Meeting, San Francisco, US, December 2014